

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
lima: Lightweight Marshalling of Python 3 Objects

lima takes arbitrary Python objects and converts them into data structures
native to Python. The result can easily be serialized into JSON, XML, and all
sorts of other things. lima is Free Software, lightweight and fast.

[image: Alpaca, Llama, Vicuna (Illustration from The New Student's Reference Work, 1914)]

lima at a Glance

import datetime
import lima

# a model
class Book:
    def __init__(self, title, date_published):
        self.title = title
        self.date_published = date_published

# a marshalling schema
class BookSchema(lima.Schema):
    title = lima.fields.String()
    published = lima.fields.Date(attr='date_published')

book = Book('The Old Man and the Sea', datetime.date(1952, 9, 1))
schema = BookSchema()
schema.dump(book)
# {'published': '1952-09-01', 'title': 'The Old Man and the Sea'}








Key Features


	Lightweight

	lima has only a few hundred SLOC. lima has no external dependencies.

	Fast

	lima tries to be as fast as possible while still remaining pure Python 3.

	Well documented

	lima has a comprehensive tutorial and more than one
line of docstring per line of Python code.

	Free

	lima is Free Software, licensed under the terms of the MIT license.






Documentation



	Installation

	First Steps
	A simple Example

	First Steps Recap





	Working with Schemas
	Defining Schemas

	Schema Objects

	Field Order

	Marshalling Collections

	Schema Recap





	A closer Look at Fields
	How a Field gets its Data

	How a Field presents its Data

	Data Validation

	Fields Recap





	Nested Data
	One-way Relationships

	Two-way Relationships

	One-to-many and many-to-many Relationships

	Nested Data Recap





	Advanced Topics
	Automated Schema Definition

	Field Name Mangling

	Advanced Topics Recap





	The lima API
	lima.abc

	lima.exc

	lima.fields

	lima.registry

	lima.schema

	lima.util





	Project Info
	Acknowledgements

	About the Image





	Changelog
	0.3.1 (2014-11-11)

	0.3 (2014-11-11)

	0.2.2 (2014-10-27)

	0.2.1 (2014-10-27)

	0.2 (2014-10-27)





	License











          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Installation

The recommended way to install lima is via pip [https://www.pip.pypa.io].

Just make sure you have at least Python 3.3 and a matching version of pip
available and installing lima becomes a one-liner:

$ pip install lima





Most of the time it’s also a good idea to do this in an isolated virtual
environment.

Starting with version 3.4, Python handles all of this (creation of virtual
environments, ensuring the availability of pip) out of the box:

$ python3 -m venv /path/to/my_venv
$ source /path/to/my_venv/bin/activate
(my_venv) $ pip install lima





If you should run into trouble, the Tutorial on Installing Distributions [https://packaging.python.org/en/latest/installing.html] from the Python
Packaging User Guide [https://packaging.python.org/en/latest/index.html]
might be helpful.





          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
First Steps

lima tries to be lean, consistent, and easy to learn. Assuming you already have
installed lima, this section should help you getting
started.


Note

Throughout this documentation, the terms marshalling and serialization
will be used synonymously.




A simple Example

Let’s say we want to expose our data to the world via a web API and we’ve
chosen JSON as our preferred serialization format. We have defined a data model
in the ORM of our choice. It might behave something like this:

class Person:
    def __init__(self, first_name, last_name, date_of_birth):
        self.first_name = first_name
        self.last_name = last_name
        self.date_of_birth = date_of_birth





Our person objects look like this:

import datetime
person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))





If we want to serialize such person objects, we can’t just feed them to
Python’s json.dumps() function: per default it only knows how to deal
with a very basic set of data types.

Here’s where lima comes in: Defining an appropriate Schema, we can convert person objects into data structures
accepted by json.dumps().

from lima import fields, Schema

class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()
    date_of_birth = fields.Date()

schema = PersonSchema()
serialized = schema.dump(person)
# {'date_of_birth': '1899-07-21',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway'}





... and to conclude our example:

import json
json.dumps(serialized)
# '{"last_name": "Hemingway", "date_of_birth": "1899-07-21", ...








First Steps Recap


	You now know how to do basic marshalling (Create a schema class with
appropriate fields. Create a schema object. Pass the object(s) to marshal to
the schema object’s dump() method.

	You now know how to get JSON for arbitrary objects (pass the result of a
schema object’s dump() method to json.dumps()).









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Working with Schemas

Schemas collect fields for object serialization.


Defining Schemas

We already know how to define schemas: subclass lima.Schema (the
shortcut for lima.schema.Schema) and add fields as class attributes.

But there’s more to schemas than this. First of all – schemas are composible:

from lima import Schema, fields

class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()

class AccountSchema(Schema):
    login = fields.String()
    password_hash = fields.String()

class UserSchema(PersonSchema, AccountSchema):
    pass

list(UserSchema.__fields__)
# ['first_name', 'last_name', 'login', 'password_hash']





Secondly, it’s possible to remove fields from subclasses that are present in
superclasses. This is done by setting a special class attribute
__lima_args__ like so:

class UserProfileSchema(UserSchema):
    __lima_args__ = {'exclude': ['last_name', 'password_hash']}

list(UserProfileSchema.__fields__)
# ['first_name', 'login']





If there’s only one field to exclude, you don’t have to put its name inside a
list - lima does that for you:

class NoLastNameSchema(UserSchema):
    __lima_args__ = {'exclude': 'last_name'}  # string instead of list

list(NoLastNameSchema.__fields__)
# ['first_name', 'login', 'password_hash']





If, on the other hand, there are lots of fields to exclude, you could provide
__lima_args__['only'] (Note that "exclude" and "only" are mutually
exclusive):

class JustNameSchema(UserSchema):
    __lima_args__ = {'only': ['first_name', 'last_name']}

list(JustNameSchema.__fields__)
# ['first_name', 'last_name']






Warning

Having to provide "only" on Schema definition hints at bad design - why
would you add a lot of fields just to remove them quickly afterwards? Have
a look at Schema Objects for the preferred way to selectively
remove fields.



And finally, we can’t just exclude fields, we can include them too. So
here is a user schema with fields provided via __lima_args__:

class UserSchema(Schema):
    __lima_args__ = {
        'include': {
            'first_name': fields.String(),
            'last_name': fields.String(),
            'login': fields.String(),
            'password_hash': fields.String()
        }
    }

list(UserSchema.__fields__)
# ['password_hash', 'last_name', 'first_name', 'login']






Note

It’s possible to mix and match all those features to your heart’s content.
lima tries to fail early if something doesn’t add up (remember,
"exclude" and "only" are mutually exclusive).




Note

The inheritance and precedence rules for fields are intuitive, but should
there ever arise the need for clarification, you can read about how a
schema’s fields are determined in the documentation of
lima.schema.SchemaMeta.






Schema Objects

Up until now we only ever needed a single instance of a schema class to marshal
the fields defined in this class. But schema objects can do more.

Providing the keyword-only argument exclude, we may exclude certain fields
from being serialized.


Keyword-only arguments

Keyword-only arguments can be recognized by their position in a
method/function signature: Every argument coming after the varargs argument
like *args (or after a single *) is a keyword-only argument.

A function that is defined as def foo(*, x, y): pass must be called
like this: foo(x=1, y=2); calling foo(1, 2) will raise a
TypeError.

It is the author’s opinion that enforcing keyword arguments in the right
places makes the resulting code more readable.

For more information about keyword-only arguments, see PEP 3102 [https://python.org/dev/peps/pep-3102]



import datetime
from lima import Schema, fields

# again, our model
class Person:
    def __init__(self, first_name, last_name, birthday):
        self.first_name = first_name
        self.last_name = last_name
        self.birthday = birthday

# again, our schema
class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()
    date_of_birth = fields.Date(attr='birthday')

# again, our person
person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))

# as before, for reference
person_schema = PersonSchema()
person_schema.dump(person)
# {'date_of_birth': '1899-07-21',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway'}

birthday_schema = PersonSchema(exclude=['first_name', 'last_name'])
birthday_schema.dump(person)
# {'date_of_birth': '1899-07-21'}





The same thing can be achieved via the only keyword-only argument:

birthday_schema = PersonSchema(only='date_of_birth')
birthday_schema.dump(person)
# {'date_of_birth': '1899-07-21'}





You may have already guessed: both exclude and only take lists of field
names as well as simple strings for a single field name – just like
__lima_args__['exclude'] and __lima_args__['only'].

For some use cases, exclude and only save the need to define lots of
almost similar schema classes.

You could also include fields on schema object creation time:

getter = lambda o: '{}, {}'.format(o.last_name, o.first_name)

schema = PersonSchema(include={'sort_name': fields.String(get=getter)})

schema.dump(person)
# {'date_of_birth': '1899-07-21',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway',
#  'sort_name': 'Hemingway, Ernest'}






Warning

Having to provide include on Schema object creation hints at bad design
- why not just include the fields in the Schema itself?






Field Order

Lima marshals objects to dictionaries. Field order doesn’t matter. Unless you
want it to:

person_schema = PersonSchema(ordered=True)
person_schema.dump(person)
# OrderedDict([
#     ('first_name', 'Ernest'),
#     ('last_name', 'Hemingway'),
#     ('date_of_birth', '1899-07-21')])
# ])





Just provide the keyword-only argument ordered=True to a schema’s
constructor, and the resulting instance will dump ordered dictionaries.

The order of the resulting key-value-pairs reflects the order in which the
fields were defined at schema definition time.

If you use __lima_args__['include'], make sure to provide an instance of
collections.OrderedDict if you care about the order of those fields as
well.

Fields specified via __lima_args__['include'] are inserted at the position
of the __lima_args__ class attribute in the Schema class. Here is a
more complex example:

from collections import OrderedDict

class FooSchema(Schema):
    one = fields.String()
    two = fields.String()

class BarSchema(FooSchema):
    three = fields.String()
    __lima_args__ = {
        'include': OrderedDict([
            ('four', fields.String()),
            ('five', fields.String())
        ])
    }
    six = fields.String()

bar_schema = BarSchema(ordered=True)





bar_schema will dump ordered dictionaries with keys ordered from one to
six.


Note

For the exact rules on how a complex schema’s fields are going to be
ordered, see lima.schema.SchemaMeta or have a look at the source
code.






Marshalling Collections

Consider this:

persons = [
    Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21)),
    Person('Virginia', 'Woolf', datetime.date(1882, 1, 25)),
    Person('Stefan', 'Zweig', datetime.date(1881, 11, 28)),
]





Instead of looping over this collection ourselves, we can ask the schema object
to do this for us - either for a single call (by specifying many=True to
the dump() method), or for every call of dump() (by specifying
many=True to the schema’s constructor):

person_schema = PersonSchema(only='last_name')
person_schema.dump(persons, many=True)
# [{'last_name': 'Hemingway'},
#  {'last_name': 'Woolf'},
#  {'last_name': 'Zweig'}]

many_persons_schema =  PersonSchema(only='last_name', many=True)
many_persons_schema.dump(persons)
# [{'last_name': 'Hemingway'},
#  {'last_name': 'Woolf'},
#  {'last_name': 'Zweig'}]








Schema Recap


	You now know how to compose bigger schemas from smaller ones (inheritance of
schema classes).

	You know how to exclude certain fields from schemas
(__lima_args__['exclude']).

	You know three different ways to add fields to schemas (class attributes,
__lima_args__['include'] and inheriting from other schemas).

	You can fine-tune what gets dumped by a schema object (only and
exclude keyword-only arguments)

	You can dump ordered dictionaries (ordered=True) and you can serialize
collections of objects (many=True).









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
A closer Look at Fields

Fields are the basic building blocks of a Schema. Even though lima fields
follow only the most basic protocol, they are rather powerful.


How a Field gets its Data

The PersonSchema from the last chapter contains three field objects
named first_name, last_name and date_of_birth. These get their data from
a person object’s attributes of the same name. But what if those attributes
were named differently?


Data from arbitrary Object Attributes

Let’s say our model doesn’t have an attribute date_of_birth but an
attribute birthday instead.

To get the data for our date_of_birth field from the model’s
birthday attribute, we have to tell the field by supplying the
attribute name via the attr argument:

import datetime
from lima import Schema, fields

class Person:
    def __init__(self, first_name, last_name, birthday):
        self.first_name = first_name
        self.last_name = last_name
        self.birthday = birthday

person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))

class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()
    date_of_birth = fields.Date(attr='birthday')

schema = PersonSchema()
schema.dump(person)
# {'date_of_birth': '1899-07-21',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway'}








Data derived by differnt Means

Providing attr is the preferred way to deal with attribute names differing
from field names, but attr is not always enough. What if we can’t get the
information we need from a single attribute? Here getters come in handy.

A getter in this context is a callable that takes an object (in our case: a
person object) and returns the value we’re interested in. We tell a field about
the getter via the get parameter:

def sort_name_getter(obj):
    return '{}, {}'.format(obj.last_name, obj.first_name)

class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()
    sort_name = fields.String(get=sort_name_getter)
    date_of_birth = fields.Date(attr='birthday')

schema = PersonSchema()
schema.dump(person)
# {'date_of_birth': '1899-07-21',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway'
#  'sort_name': 'Hemingway, Ernest'}






Note

For getters, lambda expressions [https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions] come in handy. sort_name could
just as well have been defined like this:

sort_name = fields.String(
    get=lambda obj: '{}, {}'.format(obj.last_name, obj.first_name)
)










Constant Field Values

Sometimes a field’s data is always the same. For example, if a schema provides
a field for type information, this field will most likely always have the same
value.

To reflect this, we could provide a getter that always returns the same value
(here, for example, the string 'https:/schema.org/Person'). But lima
provides a better way to achieve the same result: Just provide the val
parameter to a field’s constructor:

class TypedPersonSchema(Schema):
    _type = fields.String(val='https://schema.org/Person')
    givenName = fields.String(attr='first_name')
    familyName = fields.String(attr='last_name')
    birthDate = fields.Date(attr='birthday')

schema = TypedPersonSchema()
schema.dump(person)
# {'_type': 'https://schema.org/Person',
#  'birthDate': '1899-07-21',
#  'familyName': 'Hemingway',
#  'givenName': 'Ernest'}






Note

It’s not possible to provide None as a constant value using val -
use a getter if you need to do this.






On Field Parameters

attr, get and val are mutually exclusive. See
lima.fields.Field for more information on this topic.






How a Field presents its Data

If a field has a static method (or instance method) pack(), this method
is used to present a field’s data. (Otherwise the field’s data is just passed
through on marshalling. Some of the more basic built-in fields behave that
way.)

So by implementing a pack() static method (or instance method), we can
support marshalling of any data type we want:

from collections import namedtuple
from lima import fields, Schema

# a new data type
GeoPoint = namedtuple('GeoPoint', ['lat', 'long'])

# a field class for the new date type
class GeoPointField(fields.Field):
    @staticmethod
    def pack(val):
        ns = 'N' if val.lat > 0 else 'S'
        ew = 'E' if val.long > 0 else 'W'
        return '{}° {}, {}° {}'.format(val.lat, ns, val.long, ew)

# a model using the new data type
class Treasure:
    def __init__(self, name, location):
        self.name = name
        self.location = location

# a schema for that model
class TreasureSchema(Schema):
    name = fields.String()
    location = GeoPointField()

treasure = Treasure('The Amber Room', GeoPoint(lat=59.7161, long=30.3956))
schema = TreasureSchema()
schema.dump(treasure)
# {'location': '59.7161° N, 30.3956° E', 'name': 'The Amber Room'}





Or we can change how already supported data types are marshalled:

class FancyDate(fields.Date):
    @staticmethod
    def pack(val):
        return val.strftime('%A, the %d. of %B %Y')

class FancyPersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()
    date_of_birth = FancyDate(attr='birthday')

schema = FancyPersonSchema()
schema.dump(person)
# {'date_of_birth': 'Friday, the 21. of July 1899',
#  'first_name': 'Ernest',
#  'last_name': 'Hemingway'}






Warning

Make sure the result of your pack() methods is JSON serializable (or
at least in a format accepted by the serializer of your target format).

Also, don’t try to override an existing instance method with a static
method. Have a look at the source if in doubt (currently only
lima.fields.Nested implements pack() as an instance method.






Data Validation

In short: There is none.

lima is opinionated in this regard. It assumes you have control over the data
you want to serialize and have already validated it before putting it in your
database.

But this doesn’t mean it can’t be done. You’ll just have to do it yourself. The
pack() method would be the place for this:

import re

class ValidEmailField(fields.String):
    @staticmethod
    def pack(val):
        if not re.match(r'[^@]+@[^@]+\.[^@]+', val):
            raise ValueError('Not an email address: {!r}'.format(val))
        return val






Note

If you need full-featured validation of your existing data at marshalling
time, have a look at marshmallow [http://marshmallow.readthedocs.org].






Fields Recap


	You now know how it’s determined where a field’s data comes from. (from least
to highest precedence: field name < attr < getter < constant field value.

	You know how a field presents its data (pack() method).

	You know how to support your own data types (subclass
lima.fields.Field) and implement pack()

	And you know how to change the marshalling of already supported data types
(subclass the appropriate field class and override pack())

	Also, you’re able to implement data validation should the need arise
(implement/override pack()).









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Nested Data

Most ORMs represent linked objects nested under an attribute of the linking
object. As an example, lets model the relationship between a book and its
author:

class Person:
    def __init__(self, first_name, last_name):
        self.first_name = first_name
        self.last_name = last_name

# A book links to its author via a nested Person object
class Book:
    def __init__(self, title, author=None):
        self.title = title
        self.author = author

person = Person('Ernest', 'Hemingway')
book = Book('The Old Man and the Sea')
book.author = person






One-way Relationships

Currently, this relationship is one way only: From a book to its author.
The author doesn’t know anything about books yet (well, in our model at least).

To serialize this construct, we have to tell lima that a Book object
has a Person object nested inside, designated via the author
attribute.

For this we use a field of type lima.fields.Nested and tell lima what
data to expect by providing the schema parameter:

from lima import fields, Schema

class PersonSchema(Schema):
    first_name = fields.String()
    last_name = fields.String()

class BookSchema(Schema):
    title = fields.String()
    author = fields.Nested(schema=PersonSchema)

schema = BookSchema()
schema.dump(book)
# {'author': {'first_name': 'Ernest', 'last_name': 'Hemingway'},
#  'title': The Old Man and the Sea'}





Along with the mandatory keyword-only argument schema,
lima.fields.Nested accepts the optional keyword-only-arguments we
already know (attr or get). All other keyword arguments provided to
lima.fields.Nested get passed through to the constructor of the nested
schema. This allows us to do stuff like the following:

class BookSchema(Schema):
    title = fields.String()
    author = fields.Nested(schema=PersonSchema, only='last_name')

schema = BookSchema()
schema.dump(book)
# {'author': {'last_name': 'Hemingway'},
#  'title': The Old Man and the Sea'}








Two-way Relationships

If not only a book should link to its author, but an author should also link to
his/her bestselling book, we can adapt our model like this:

# authors link to their bestselling book
class Author(Person):
    def __init__(self, first_name, last_name, bestseller=None):
        super().__init__(first_name, last_name)
        self.bestseller = bestseller

# books link to their authors
class Book:
    def __init__(self, title, author=None):
        self.title = title
        self.author = author

author = Author('Ernest', 'Hemingway')
book = Book('The Old Man and the Sea')
book.author = author
author.bestseller = book





If we want to construct schemas for models like this, we will have to adress
two problems:


	Definition order: If we define our AuthorSchema first, its
bestseller attribute will have to reference a BookSchema -
but this doesn’t exist yet, since we decided to define AuthorSchema
first. If we decide to define BookSchema first instead, we run into
the same problem with its author attribute.

	Recursion: An author links to a book that links to an author that links
to a book that links to an author that links to a book that links to an
author that links to a book that links to an author that links to a book
that links to an author RuntimeError: maximum recursion depth exceeded



lima makes it easy to deal with those problems:

To overcome the problem of recursion, just exclude the attribute on the other
side that links back.

To overcome the problem of definition order, lima supports lazy evaluation of
schemas. Just pass the qualified name (or the fully module-qualified name)
of a schema class to lima.fields.Nested instead of the class itself:

class AuthorSchema(PersonSchema):
    bestseller = fields.Nested(schema='BookSchema', exclude='author')

class BookSchema(Schema):
    title = fields.String()
    author = fields.Nested(schema=AuthorSchema, exclude='bestseller')

author_schema = AuthorSchema()
author_schema.dump(author)
# {'first_name': 'Ernest',
#  'last_name': 'Hemingway',
#  'bestseller': {'title': The Old Man and the Sea'}

book_schema = BookSchema()
book_schema.dump(book)
# {'author': {'first_name': 'Ernest', 'last_name': 'Hemingway'},
#  'title': The Old Man and the Sea'}






On class names

For referring to classes via their name, the lima documentation only ever
talks about two different kinds of class names: the qualified name
(qualname for short) and the fully module-qualified name:


	The qualified name

	This is the value of the class’s __qualname__ attribute. Most
of the time, it’s the same as the class’s __name__ attribute
(except if you define classes within classes or functions ...). If you
define class Foo: pass at the top level of your module, the class’s
qualified name is simply Foo. Qualified names were introduced with
Python 3.3 via PEP 3155 [https://python.org/dev/peps/pep-3155]

	The fully module-qualified name

	This is the qualified name of the class prefixed with the full name of
the module the class is defined in. If you define class Qux: pass
within a class Baz (resulting in the qualified name Baz.Qux)
at the top level of your foo.bar module, the class’s fully
module-qualified name is foo.bar.Baz.Qux.






Warning

If you define schemas in local namespaces (at function execution time),
their names become meaningless outside of their local context.  For
example:

def make_schema():
    class FooSchema(Schema):
        foo = fields.String()
    return FooSchema

schemas = [make_schema() for i in range(1000)]





Which of those one thousend schemas would we refer to, would we try to link
to a FooSchema by name? To avoid ambiguity, lima will refuse to link to
schemas defined in local namespaces.



By the way, there’s nothing stopping us from using the idioms we just learned
for models that link to themselves - everything works as you’d expect:

class MarriedPerson(Person):
    def __init__(self, first_name, last_name, spouse=None):
        super().__init__(first_name, last_name)
        self.spouse = spouse

class MarriedPersonSchema(PersonSchema):
    spouse = fields.Nested(schema='MarriedPersonSchema', exclude='spouse')








One-to-many and many-to-many Relationships

Until now, we’ve only dealt with one-to-one relations. What about one-to-many
and many-to-many relations? Those link to collections of objects.

We know the necessary building blocks already: Providing additional keyword
arguments to lima.fields.Nested passes them through to the specified
schema’s constructor. And providing many=True to a schema’s construtor will
have the schema marshalling collections - so:

# authors link to their books now
class Author(Person):
    def __init__(self, first_name, last_name, books=None):
        super().__init__(first_name, last_name)
        self.books = books

author = Author('Virginia', 'Woolf')
author.books = [
    Book('Mrs Dalloway', author),
    Book('To the Lighthouse', author),
    Book('Orlando', author)
]

class AuthorSchema(PersonSchema):
    books = fields.Nested(schema='BookSchema', exclude='author', many=True)

class BookSchema(Schema):
    title = fields.String()
    author = fields.Nested(schema=AuthorSchema, exclude='books')

schema = AuthorSchema()
schema.dump(author)
# {'books': [{'title': 'Mrs Dalloway'},
#            {'title': 'To the Lighthouse'},
#            {'title': 'Orlando'}],
#  'last_name': 'Woolf',
#  'first_name': 'Virginia'}








Nested Data Recap


	You now know how to marshal nested objects (via a field of type
lima.fields.Nested)

	You know about lazy evaluation of nested schemas and how to specify those via
qualified and fully module-qualified names.

	You know how to implement two-way relationships between objects (pass
exclude or only to the nested schema through
lima.fields.Nested)

	You know how to marshal nested collections of objects (pass many=True to
the nested schema through lima.fields.Nested)









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Advanced Topics


Automated Schema Definition

Validating ORM agnosticism for a moment, let’s see how we could utilize
__lima_args__['include'] to create our Schema automatically.

We start with this SQLAlchemy [http://www.sqlalchemy.org] model (skip this
section if you don’t want to install SQLAlchemy):

import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Account(Base):
    __tablename__ = 'accounts'
    id = sa.Column(sa.Integer, primary_key=True)
    login = sa.Column(sa.String)
    password_hash = sa.Column(sa.String)





lima.fields defines a mapping lima.fields.TYPE_MAPPING of some
Python types to field classes. We can utilize this as follows:

from lima import fields

def fields_for_model(model):
    result = {}
    for name, col in model.__mapper__.columns.items():
        field_class = fields.TYPE_MAPPING[col.type.python_type]
        result[name] = field_class()
    return result





Defining lima schemas becomes a piece of cake now:

from lima import Schema

class AccountSchema(Schema):
    __lima_args__ = {'include': fields_for_model(Account)}

dict(AccountSchema.__fields__)
# {'id': <lima.fields.Integer at 0x...>,
#  'login': <lima.fields.String at 0x...>,
#  'password_hash': <lima.fields.String at 0x...>}





... and of course you still can manually add, exclude or inherit anything you
like.


Warning

Neither lima.fields.TYPE_MAPPING nor the available field classes
are as exhaustive as they should be. Expect above code to fail on slightly
exotic column types. There is still work to be done.






Field Name Mangling

Fields specified via __lima_args__['include'] can have arbitrary names.
Fields provided via class attributes have a drawback: class attribute names
have to be valid Python identifiers.

lima implements a simple name mangling mechanism to allow the specification of
some common non-Python-identifier field names (like JSON-LD’s "@id") as
class attributes.

The following table shows how name prefixes will be replaced by lima when
specifying fields as class attributes (note that every one of those prefixes
ends with a double underscore):







	name prefix
	replacement




	'at__'
	'@'


	'dash__'
	'-'


	'dot__'
	'.'


	'hash__'
	'#'


	'plus__'
	'+'


	'nil__'
	'' (the emtpy String)





This enables us to do the following:

class FancyFieldNamesSchema(Schema):
    at__foo = fields.String(attr='foo')
    hash__bar = fields.String(attr='bar')
    nil__class = fields.String(attr='cls')  # Python Keyword

list(FancyFieldNamesSchema.__fields__)
# ['@foo', '#bar', 'class']






Note

When using field names that aren’t Python identifiers, lima obviously can’t
look for attributes with those same names, so make sure to specify
explicitly how the data for these fields should be determined (see
How a Field gets its Data).

Also, quotes in field names are currently not allowed in lima, regardless
of how they are specified.






Advanced Topics Recap


	You are now able to create schemas automatically
(__lima_args__['include'] with some model-specific code).

	You can specify a field named '@context' as a schema class attribute
(using field name mangling: 'at__context').









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
The lima API

Please note that the lima API uses a relatively uncommon feature of Python 3:
Keyword-only arguments.


Keyword-only arguments

Keyword-only arguments can be recognized by their position in a
method/function signature: Every argument coming after the varargs argument
like *args (or after a single *) is a keyword-only argument.

A function that is defined as def foo(*, x, y): pass must be called
like this: foo(x=1, y=2); calling foo(1, 2) will raise a
TypeError.

It is the author’s opinion that enforcing keyword arguments in the right
places makes the resulting code more readable.

For more information about keyword-only arguments, see PEP 3102 [https://python.org/dev/peps/pep-3102]




lima.abc

Abstract base classes for fields and schemas.


	
class lima.abc.FieldABC

	Abstract base class for fields.

Being an instance of FieldABC marks a class as a field for
internal type checks. You can use this class to implement your own type
checks as well.


Note

To create new fields, it’s a better Idea to subclass
lima.fields.Field directly instead of implementing FieldABC on
your own.








	
class lima.abc.SchemaABC

	Abstract base class for schemas.

Being an instance of SchemaABC marks a class as a schema for
internal type checks. You can use this class to implement your own type
checks as well.


Note

To create new schemas, it’s a way better Idea to subclass
lima.schema.Schema directly instead of implementing SchemaABC
on your own.










lima.exc

The lima exception hierarchy.


Note

Currently this module only holds Exceptions related to
lima.registry, but this might change in the future.




	
exception lima.exc.AmbiguousClassNameError

	Raised when asking for a class with an ambiguous name.

Usually this is the case if two or more classes of the same name were
registered from within different modules, and afterwards a registry is
asked for one of those classes without specifying the module in the class
name.






	
exception lima.exc.ClassNotFoundError

	Raised when a class was not found by a registry.






	
exception lima.exc.RegisterLocalClassError

	Raised when trying to register a class defined in a local namespace.






	
exception lima.exc.RegistryError

	The base class for all registry-related exceptions.








lima.fields

Field classes and related code.


	
lima.fields.TYPE_MAPPING =dict(...)

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s


(key, value) pairs



	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:


d[k] = v




	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list.  For example:  dict(one=1, two=2)








	
lima.fields.type_mapping =dict(...)

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s


(key, value) pairs



	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:


d[k] = v




	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list.  For example:  dict(one=1, two=2)








	
class lima.fields.Boolean(*, attr=None, get=None, val=None)

	A boolean field.

currently this class has no additional functionality compared to
Field. Nevertheless it should be used over Field when
referencing boolean values as an indicator for a field’s type and to keep
code future-proof.






	
class lima.fields.Date(*, attr=None, get=None, val=None)

	A date field.


	
static pack(val)

	Return a string representation of val.





	Parameters:	val – The :class: datetime.date object to convert.


	Returns:	The ISO 8601-representation of val (YYYY-MM-DD).














	
class lima.fields.DateTime(*, attr=None, get=None, val=None)

	A DateTime field.


	
static pack(val)

	Return a string representation of val.





	Parameters:	val – The :class: datetime.datetime object to convert.


	Returns:	The ISO 8601-representation of val
(YYYY-MM-DD%HH:MM:SS.mmmmmm+HH:MM for
datetime.datetime objects with Timezone
information and microsecond precision).














	
class lima.fields.Field(*, attr=None, get=None, val=None)

	Base class for fields.





	Parameters:	
	attr – The optional name of the corresponding attribute.

	get – An optional getter function accepting an object as its only
parameter and returning the field value.

	val – An optional constant value for the field.










New in version 0.3: The val parameter.



attr, get and val are mutually exclusive.

When a Field object ends up with two or more of the attributes
attr, get and val regardless (because one or more
of them are implemented at the class level for example),
lima.schema.Schema.dump() tries to get the field’s value in the
following order: val takes precedence over get and
get takes precedence over attr.

If a Field object ends up with none of these attributes (not at
the instance and not at the class level), lima.schema.Schema.dump()
tries to get the field’s value by looking for an attribute of the same name
as the field has within the corresponding lima.schema.Schema
instance.






	
class lima.fields.Float(*, attr=None, get=None, val=None)

	A float field.

currently this class has no additional functionality compared to
Field. Nevertheless it should be used over Field when
referencing float values as an indicator for a field’s type and to keep
code future-proof.






	
class lima.fields.Integer(*, attr=None, get=None, val=None)

	An integer field.

currently this class has no additional functionality compared to
Field. Nevertheless it should be used over Field when
referencing integer values as an indicator for a field’s type and to keep
code future-proof.






	
class lima.fields.Nested(*, schema, attr=None, get=None, val=None, **kwargs)

	A Field referencing another object with it’s respective schema.





	Parameters:	
	schema – The schema of the referenced object. This can be specified via
a schema object, a schema class (that will get instantiated
immediately) or the qualified name of a schema class (for when
the named schema has not been defined at the time of the
Nested object’s creation). If two or more schema classes
with the same name exist in different modules, the schema class
name has to be fully module-qualified (see the entry on class
names for clarification of these concepts).
Schemas defined within a local namespace can not be referenced by
name.

	attr – The optional name of the corresponding attribute.

	get – An optional getter function accepting an object as its only
parameter and returning the field value.

	val – An optional constant value for the field.

	kwargs – Optional keyword arguments to pass to the :class: Schema‘s
constructor when the time has come to instance it. Must be empty if
schema is a lima.schema.Schema object.










New in version 0.3: The val parameter.







	Raises:	ValueError –
If kwargs are specified even if schema is a
lima.schema.Schema object.





Examples:

# refer to PersonSchema class
author = Nested(schema=PersonSchema)

# refer to PersonSchema class with additional params
artists = Nested(schema=PersonSchema, exclude='email', many=True)

# refer to PersonSchema object
author = Nested(schema=PersonSchema())

# refer to PersonSchema object with additional params
# (note that Nested() gets no kwargs)
artists = Nested(schema=PersonSchema(exclude='email', many=true))

# refer to PersonSchema per name
author = Nested(schema='PersonSchema')

# refer to PersonSchema per name with additional params
author = Nested(schema='PersonSchema', exclude='email', many=True)

# refer to PersonSchema per module-qualified name
# (in case of ambiguity)
author = Nested(schema='project.persons.PersonSchema')

# specify attr name as well
user = Nested(attr='login_user', schema=PersonSchema)






	
pack(val)

	Return the output of the referenced object’s schema’s dump method.

If the referenced object’s schema was specified by name at the
Nested field’s creation, this is the time when this schema is
instantiated (this is done only once).





	Parameters:	val – The nested object to convert.


	Returns:	lima.schema.Schema‘s
lima.schema.Schema.dump() method.


	Return type:	The output of the referenced :class














	
class lima.fields.String(*, attr=None, get=None, val=None)

	A string field.

currently this class has no additional functionality compared to
Field. Nevertheless it should be used over Field when
referencing string values as an indicator for a field’s type and to keep
code future-proof.








lima.registry

Internal class registry.


Warning

For users of lima there should be no need to use anything within
lima.registry directly. Name and contents of this module may change
at any time without deprecation notice or upgrade path.




	
lima.registry.global_registry =lima.registry.Registry()

	A class registry.






	
class lima.registry.Registry

	A class registry.


	
get(name)

	Get a registered class by its name and return it.





	Parameters:	name – The name of the class to look up. Has to be either the
class’s qualified name or the class’s fully module-qualified
name in case two classes with the same qualified name from
different modules were registered (see the entry on class
names for clarification of these concepts).
Schemas defined within a local namespace can not be referenced
by name.




	Returns:	The specified class.




	Raises:	
	ClassNotFoundError –
If the specified class could not be found (see
lima.exc.ClassNotFoundError).

	AmbiguousClassNameError –
If more than one class was found. Usually
this can be fixed by using a fully module-qualified class name
(see lima.exc.AmbiguousClassNameError).














	
register(cls)

	Register a class.





	Parameters:	cls – The class to register. Must not have been defined in a local
namespace.


	Raises:	RegisterLocalClassError –
In case cls is a class defined in a
local namespace (see exc.RegisterLocalClassError).
















lima.schema

Schema class and related code.


	
class lima.schema.Schema(*, exclude=None, only=None, include=None, ordered=False, many=False)

	Base class for Schemas.





	Parameters:	
	exclude – An optional sequence of field names to be removed from the
fields of the new Schema instance. If only one field is to
be removed, it’s ok to supply a simple string instead of a list
containing only one string for exclude. exclude may not be
specified together with only.

	only – An optional sequence of the names of the only fields that shall
remain for the new Schema instance.  If just one field is
to remain, it’s ok to supply a simple string instead of a list
containing only one string for only. only may not be
specified together with exclude.

	include – An optional mapping of field names to fields to additionally
include in the new Schema instance. Think twice before using this
option - most of the time it’s better to include fields at class
level rather than at instance level.

	ordered – An optional boolean indicating if the :meth: Schema.dump
method should output collections.OrderedDict objects
instead of simple dict objects.  Defaults to False.
This does not influence how nested fields are serialized.

	many – An optional boolean indicating if the new Schema will be
serializing single objects (many=False) or collections of
objects (many=True) per default. This can later be overridden
in the dump() Method.










New in version 0.3: The include parameter.




New in version 0.3: The ordered parameter.



Upon creation, each Schema object gets an internal mapping of field names
to fields. This mapping starts out as a copy of the class’s
__fields__ attribute.  (For an explanation on how this
__fields__ attribute is determined, see SchemaMeta.)

Note that the fields themselves are not copied - changing the field of an
instance would change this field for the other instances and classes
referencing this field as well. In general it is strongly suggested to
treat fields as immutable.

The internal field mapping is then modified as follows:


	If include was provided, fields specified therein are added
(overriding any fields of the same name already present)

If the order of your fields is important, make sure that include is
of type collections.OrderedDict or similar.



	If exclude was provided, fields specified therein are removed.



	If only was provided, all but the fields specified therein are
removed (unless exclude was provided as well, in which case a
ValueError is raised.)





Also upon creation, each Schema object gets an individually created dump
function that aims to unroll most of the loops and to minimize the number
of attribute lookups, resulting in a little speed gain on serialization.

Schema classes defined outside of local namespaces can be
referenced by name (used by lima.fields.Nested).


	
dump(obj, *, many=None)

	Return a marshalled representation of obj.





	Parameters:	
	obj – The object (or collection of objects) to marshall.

	many – Wether obj is a single object or a collection of objects. If
many is None, the value of the instance’s
many attribute is used.






	Returns:	A representation of obj in the form of a JSON-serializable dict
(or collections.OrderedDict if the Schema was created with
ordered==True), with each entry corresponding to one of the
Schema‘s fields. (Or a list of such dicts in case a
collection of objects was marshalled)
















	
class lima.schema.SchemaMeta

	Metaclass of Schema.


Note

The metaclass SchemaMeta is used internally to simplify the
configuration of new Schema classes. For users of the library
there should be no need to use SchemaMeta directly.



When defining a new Schema (sub)class, SchemaMeta makes
sure that the new class has a class attribute __fields__ of type
collections.OrderedDict containing the fields for the new
Schema.

__fields__ is determined like this:


	The __fields__ of all base classes are copied (with base classes
specified first having precedence).

Note that the fields themselves are not copied - changing an inherited
field would change this field for all base classes referencing this field
as well. In general it is strongly suggested to treat fields as
immutable.



	Fields (Class variables of type lima.abc.FieldABC) are moved out
of the class namespace and into __fields__, overriding any fields
of the same name therein.



	If present, the class attribute __lima_args__ is removed from the
class namespace and evaluated as follows:


	Fields specified via __lima_args__['include'] (an optional mapping
of field names to fields) are inserted into __fields__.
overriding any fields of the same name therein.

If the order of your fields is important, make sure that
__lima_args__['include'] is of type
collections.OrderedDict or similar.

New fields in __lima_args__['include']__ are inserted at the
position where __lima_args__ is specified in the class.



	Fields named in an optional sequence __lima_args__['exclude'] are
removed from __fields__. If only one field is to be removed,
it’s ok to supply a simple string instead of a list containing only one
string. __lima_args__['exclude'] may not be specified together with
__lima_args__['only'].



	If in an optional sequence __lima_args__['only'] is provided, all
but the fields mentioned therein are removed from __fields__.
If only one field is to remain, it’s ok to supply a simple string
instead of a list containing only one string. __lima_args__['only']
may not be specified together with __lima_args__['exclude'].

Think twice before using __lima_args__['only'] - most of the time
it’s better to rethink your Schema than to remove a lot of fields that
maybe shouldn’t be there in the first place.










New in version 0.3: Support for __lima_args__['only'].



SchemaMeta also makes sure the new Schema class is registered with
the lima class registry lima.registry (at least if the Schema isn’t
defined inside a local namespace, where we wouldn’t find it later on).


	
classmethod __prepare__(metacls, name, bases)

	Return an OrderedDict as the class namespace.












lima.util

Internal utilities.


Warning

For users of lima there should be no need to use anything within
lima.util directly. Name and contents of this module may change at
any time without deprecation notice or upgrade path.




	
lima.util.complain_about(name)

	A Context manager that makes every Exception about name






	
lima.util.ensure_iterable(obj)

	Raise TypeError if obj is not iterable.






	
lima.util.ensure_mapping(obj)

	Raise TypeError if obj is no mapping.






	
lima.util.ensure_only_instances_of(collection, cls)

	Raise TypeError, if collection contains elements not of type cls.






	
lima.util.ensure_only_one_of(collection, elements)

	Raise ValueError if collection contains more than one of elements.

Only distinct elements are considered. For mappings, the keys are
considered.





	Parameters:	
	collection – An iterable container.

	elements – A set of elements that must not appear together.






	Raises:	ValueError –
If collection contains more than one (distinct) element
of elements.












	
lima.util.ensure_subset_of(collection, superset)

	Raise ValueError if collection is no subset of superset

Only distinct elements are considered. For mappings, only the keys are
considered.





	Parameters:	
	collection – An iterable container.

	superset – A set of allowed elements.






	Raises:	ValueError –
If collection contains more than one (distinct) element
of elements.












	
class lima.util.suppress(*exceptions)

	Context manager to suppress specified exceptions

This context manager is taken directly from the Python 3.4 standard library
to get support for Python 3.3.

See https://docs.python.org/3.4/library/contextlib.html#contextlib.suppress






	
lima.util.vector_context(obj)

	Return obj if obj is a vector, or [obj] in case obj is a scalar.

For this function, a vector is an iterable that’s no string. Everything
else counts as a scalar.

Inspired by Perl’s list context (this has nothing to do with Python context
managers). Useful to provide scalar values to operations that expect
vectors (so there’s no need to put brackets around single elements).





	Parameters:	obj – Any object


	Returns:	obj if obj is a vector, otherwise [obj].















          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Project Info

lima was started in 2014 by Bernhard Weitzhofer.


Acknowledgements

lima is heavily inspired by marshmallow [http://marshmallow.readthedocs.org], from which it lifts most of its
concepts from.


Note

The key differences between lima and marshmallow are (from my, Bernhard’s
point of view):


	marshmallow supports Python 2 as well, lima is Python 3 only.

	marshmallow has more features, foremost among them deserialization and
validation.

	Skipping validation and doing internal stuff
differently, lima is (at the time of writing this) noticeably faster.



Although greatly inspired by marshmallow’s API, the lima API differs from
marshmallow’s. lima is not a drop-in replacement for marshmallow and it
does not intend to become one.



The lima sources include a copy of the  Read the Docs Sphinx Theme [https://github.com/snide/sphinx_rtd_theme].

The author believes to have benefited a lot from looking at the documentation
and source code of other awesome projects, among them
django [https://www.djangoproject.com],
morepath [https://morepath.readthedocs.org] and
SQLAlchemy [http://www.sqlalchemy.org] as well as the Python standard
library itself. (Seriously, look in there!)




About the Image

The Vicuña is the smallest and lightest camelid in the world. In this 1914
illustration [1], it is depicted next to its bigger and heavier relatives, the
Llama and the Alpaca.

Despite its delicate frame, the Vicuña is perfectly adapted to the harsh
conditions in the high alpine regions of the Andes. It is a mainly wild animal
long time believed to never have been domesticated. Reports of Vicuñas
breathing fire are greatly exaggerated.




	[1]	Beach, C. (Ed.). (1914). The New Student’s Reference Work. Chicago: F.
E. Compton and Company (via Wikisource [http://en.wikisource.org/wiki/The_New_Student%27s_Reference_Work]).










          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
Changelog


0.3.1 (2014-11-11)


	Fix inconsistency in changelog.






0.3 (2014-11-11)


	Support dumping of OrderedDict objects by providing ordered=True to
a Schema constructor.



	Implement field name mangling: at__foo becomes @foo for fields
specified as class attributes.



	Support constant field values by providing val to a Field constructor.



	Add new ways to specify a schema’s fields:



	Add support for __lima_args__['only'] on schema definition

	Add include parameter to Schema constructor






This makes specifying fields on schema definition (__lima_args__ -
options include, exclude, only) consistent with specifying fields on
schema instantiation (schema constructor args include, exclude, only).



	Deprecate fields.type_mapping in favour of fields.TYPE_MAPPING.



	Improve the documentation.



	Overall cleanup, improvements and bug fixes.








0.2.2 (2014-10-27)


	Fix issue with package not uploading to PYPI

	Fix tiny issues with illustration






0.2.1 (2014-10-27)


	Fix issues with docs not building on readthedocs.org






0.2 (2014-10-27)


	Initial release









          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            
  
License

Copyright (c) 2014, Bernhard Weitzhofer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.





          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   l
   


   
     			

     		
       l	

     
       	[image: -]
       	
       lima	
       

     
       	
       	
       lima.abc	
       

     
       	
       	
       lima.exc	
       

     
       	
       	
       lima.fields	
       

     
       	
       	
       lima.registry	
       

     
       	
       	
       lima.schema	
       

     
       	
       	
       lima.util	
       

   



          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	lima 0.3.1 documentation 
 
      

    


    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | V
 


_


  	
      
  	__prepare__() (lima.schema.SchemaMeta class method)
  


  





A


  	
      
  	AmbiguousClassNameError
  


  





B


  	
      
  	Boolean (class in lima.fields)
  


  





C


  	
      
  	ClassNotFoundError
  


  

  	
      
  	complain_about() (in module lima.util)
  


  





D


  	
      
  	Date (class in lima.fields)
  


      
  	DateTime (class in lima.fields)
  


  

  	
      
  	dump() (lima.schema.Schema method)
  


  





E


  	
      
  	ensure_iterable() (in module lima.util)
  


      
  	ensure_mapping() (in module lima.util)
  


      
  	ensure_only_instances_of() (in module lima.util)
  


  

  	
      
  	ensure_only_one_of() (in module lima.util)
  


      
  	ensure_subset_of() (in module lima.util)
  


  





F


  	
      
  	Field (class in lima.fields)
  


      
  	FieldABC (class in lima.abc)
  


  

  	
      
  	Float (class in lima.fields)
  


  





G


  	
      
  	get() (lima.registry.Registry method)
  


  

  	
      
  	global_registry (in module lima.registry)
  


  





I


  	
      
  	Integer (class in lima.fields)
  


  





L


  	
      
  	lima.abc (module)
  


      
  	lima.exc (module)
  


      
  	lima.fields (module)
  


  

  	
      
  	lima.registry (module)
  


      
  	lima.schema (module)
  


      
  	lima.util (module)
  


  





N


  	
      
  	Nested (class in lima.fields)
  


  





P


  	
      
  	pack() (lima.fields.Date static method)
  


      	
        
  	(lima.fields.DateTime static method)
  


        
  	(lima.fields.Nested method)
  


      


  





R


  	
      
  	register() (lima.registry.Registry method)
  


      
  	RegisterLocalClassError
  


  

  	
      
  	Registry (class in lima.registry)
  


      
  	RegistryError
  


  





S


  	
      
  	Schema (class in lima.schema)
  


      
  	SchemaABC (class in lima.abc)
  


      
  	SchemaMeta (class in lima.schema)
  


  

  	
      
  	String (class in lima.fields)
  


      
  	suppress (class in lima.util)
  


  





T


  	
      
  	TYPE_MAPPING (in module lima.fields)
  


  

  	
      
  	type_mapping (in module lima.fields)
  


  





V


  	
      
  	vector_context() (in module lima.util)
  


  







          

      

      

    


    
         Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  _static/up-pressed.png





_static/down-pressed.png





_static/file.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		lima 0.3.1 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		lima.abc


		lima.exc


		lima.fields


		lima.registry


		lima.schema


		lima.util






          

      

      

    


    
        © Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

_images/alpaca_llama_vicuna.jpg
A

=
2

LL.






_static/minus.png





_static/comment-close.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		lima 0.3.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Bernhard Weitzhofer.
      Created using Sphinx 1.2.3.
    

  

_static/comment-bright.png





_static/comment.png





_static/up.png





_static/down.png





_static/ajax-loader.gif





_static/plus.png





