
lima Documentation
Release 0.6.dev0

Bernhard Weitzhofer

May 12, 2015

Contents

1 lima at a Glance 3

2 Key Features 5

3 Documentation 7
3.1 Installation . 7
3.2 First Steps . 7
3.3 Working with Schemas . 8
3.4 A closer Look at Fields . 12
3.5 Linked Data . 16
3.6 Advanced Topics . 22
3.7 The lima API . 23
3.8 Project Info . 30
3.9 Changelog . 30
3.10 License . 32

Python Module Index 33

i

ii

lima Documentation, Release 0.6.dev0

lima takes arbitrary Python objects and converts them into data structures native to Python. The result can easily be
serialized into JSON, XML, and all sorts of other things. lima is Free Software, lightweight and fast.

Contents 1

lima Documentation, Release 0.6.dev0

2 Contents

CHAPTER 1

lima at a Glance

import datetime
import lima

a model
class Book:

def __init__(self, title, date_published):
self.title = title
self.date_published = date_published

a marshalling schema
class BookSchema(lima.Schema):

title = lima.fields.String()
published = lima.fields.Date(attr='date_published')

book = Book('The Old Man and the Sea', datetime.date(1952, 9, 1))
schema = BookSchema()
schema.dump(book)
{'published': '1952-09-01', 'title': 'The Old Man and the Sea'}

3

lima Documentation, Release 0.6.dev0

4 Chapter 1. lima at a Glance

CHAPTER 2

Key Features

Lightweight lima has only a few hundred SLOC. lima has no external dependencies.

Fast lima tries to be as fast as possible while still remaining pure Python 3.

Well documented lima has a comprehensive tutorial and more than one line of docstring per line of Python code.

Free lima is Free Software, licensed under the terms of the MIT license.

5

lima Documentation, Release 0.6.dev0

6 Chapter 2. Key Features

CHAPTER 3

Documentation

3.1 Installation

The recommended way to install lima is via pip.

Just make sure you have at least Python 3.3 and a matching version of pip available and installing lima becomes a
one-liner:

$ pip install lima

Most of the time it’s also a good idea to do this in an isolated virtual environment.

Starting with version 3.4, Python handles all of this (creation of virtual environments, ensuring the availability of pip)
out of the box:

$ python3 -m venv /path/to/my_venv
$ source /path/to/my_venv/bin/activate
(my_venv) $ pip install lima

If you should run into trouble, the Tutorial on Installing Distributions from the Python Packaging User Guide might
be helpful.

3.2 First Steps

lima tries to be lean, consistent, and easy to learn. Assuming you already have installed lima, this section should help
you getting started.

Note: Throughout this documentation, the terms marshalling and serialization will be used synonymously.

3.2.1 A simple Example

Let’s say we want to expose our data to the world via a web API and we’ve chosen JSON as our preferred serialization
format. We have defined a data model in the ORM of our choice. It might behave something like this:

class Person:
def __init__(self, first_name, last_name, date_of_birth):

self.first_name = first_name
self.last_name = last_name
self.date_of_birth = date_of_birth

7

https://www.pip.pypa.io
https://packaging.python.org/en/latest/installing.html
https://packaging.python.org/en/latest/index.html

lima Documentation, Release 0.6.dev0

Our person objects look like this:

import datetime
person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))

If we want to serialize such person objects, we can’t just feed them to Python’s json.dumps() function: per default
it only knows how to deal with a very basic set of data types.

Here’s where lima comes in: Defining an appropriate Schema, we can convert person objects into data structures
accepted by json.dumps().

from lima import fields, Schema

class PersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()
date_of_birth = fields.Date()

schema = PersonSchema()
serialized = schema.dump(person)
{'date_of_birth': '1899-07-21',
'first_name': 'Ernest',
'last_name': 'Hemingway'}

... and to conclude our example:

import json
json.dumps(serialized)
'{"last_name": "Hemingway", "date_of_birth": "1899-07-21", ...

3.2.2 First Steps Recap

• You now know how to do basic marshalling (Create a schema class with appropriate fields. Create a schema
object. Pass the object(s) to marshal to the schema object’s dump() method.

• You now know how to get JSON for arbitrary objects (pass the result of a schema object’s dump() method to
json.dumps()).

3.3 Working with Schemas

Schemas collect fields for object serialization.

3.3.1 Defining Schemas

We already know how to define schemas: subclass lima.Schema (the shortcut for lima.schema.Schema) and
add fields as class attributes.

But there’s more to schemas than this. First of all – schemas are composible:

from lima import Schema, fields

class PersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()

8 Chapter 3. Documentation

lima Documentation, Release 0.6.dev0

class AccountSchema(Schema):
login = fields.String()
password_hash = fields.String()

class UserSchema(PersonSchema, AccountSchema):
pass

list(UserSchema.__fields__)
['first_name', 'last_name', 'login', 'password_hash']

Secondly, it’s possible to remove fields from subclasses that are present in superclasses. This is done by setting a
special class attribute __lima_args__ like so:

class UserProfileSchema(UserSchema):
__lima_args__ = {'exclude': ['last_name', 'password_hash']}

list(UserProfileSchema.__fields__)
['first_name', 'login']

If there’s only one field to exclude, you don’t have to put its name inside a list - lima does that for you:

class NoLastNameSchema(UserSchema):
__lima_args__ = {'exclude': 'last_name'} # string instead of list

list(NoLastNameSchema.__fields__)
['first_name', 'login', 'password_hash']

If, on the other hand, there are lots of fields to exclude, you could provide __lima_args__[’only’] (Note that
"exclude" and "only" are mutually exclusive):

class JustNameSchema(UserSchema):
__lima_args__ = {'only': ['first_name', 'last_name']}

list(JustNameSchema.__fields__)
['first_name', 'last_name']

Warning: Having to provide "only" on Schema definition hints at bad design - why would you add a lot of
fields just to remove all but one of them afterwards? Have a look at Schema Objects for the preferred way to
selectively remove fields.

And finally, we can’t just exclude fields, we can include them too. So here is a user schema with fields provided via
__lima_args__:

class UserSchema(Schema):
__lima_args__ = {

'include': {
'first_name': fields.String(),
'last_name': fields.String(),
'login': fields.String(),
'password_hash': fields.String()

}
}

list(UserSchema.__fields__)
['password_hash', 'last_name', 'first_name', 'login']

Note: It’s possible to mix and match all those features to your heart’s content. lima tries to fail early if something
doesn’t add up (remember, "exclude" and "only" are mutually exclusive).

3.3. Working with Schemas 9

lima Documentation, Release 0.6.dev0

Note: The inheritance and precedence rules for fields are intuitive, but should there ever arise the need for clarification,
you can read about how a schema’s fields are determined in the documentation of lima.schema.SchemaMeta.

3.3.2 Schema Objects

Up until now we only ever needed a single instance of a schema class to marshal the fields defined in this class. But
schema objects can do more.

Providing the keyword-only argument exclude, we may exclude certain fields from being serialized.

Keyword-only arguments
Keyword-only arguments can be recognized by their position in a method/function signature: Every argument coming
after the varargs argument like *args (or after a single *) is a keyword-only argument.

A function that is defined as def foo(*, x, y): pass must be called like this: foo(x=1, y=2); calling
foo(1, 2) will raise a TypeError.

It is the author’s opinion that enforcing keyword arguments in the right places makes the resulting code more readable.

For more information about keyword-only arguments, see PEP 3102

import datetime
from lima import Schema, fields

again, our model
class Person:

def __init__(self, first_name, last_name, birthday):
self.first_name = first_name
self.last_name = last_name
self.birthday = birthday

again, our schema
class PersonSchema(Schema):

first_name = fields.String()
last_name = fields.String()
date_of_birth = fields.Date(attr='birthday')

again, our person
person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))

as before, for reference
person_schema = PersonSchema()
person_schema.dump(person)
{'date_of_birth': '1899-07-21',
'first_name': 'Ernest',
'last_name': 'Hemingway'}

birthday_schema = PersonSchema(exclude=['first_name', 'last_name'])
birthday_schema.dump(person)
{'date_of_birth': '1899-07-21'}

The same thing can be achieved via the only keyword-only argument:

10 Chapter 3. Documentation

https://python.org/dev/peps/pep-3102

lima Documentation, Release 0.6.dev0

birthday_schema = PersonSchema(only='date_of_birth')
birthday_schema.dump(person)
{'date_of_birth': '1899-07-21'}

You may have already guessed: both exclude and only take lists of field names as well as simple strings for a
single field name – just like __lima_args__[’exclude’] and __lima_args__[’only’].

For some use cases, exclude and only save the need to define lots of almost similar schema classes.

You could also include fields on schema object creation time:

getter = lambda o: '{}, {}'.format(o.last_name, o.first_name)

schema = PersonSchema(include={'sort_name': fields.String(get=getter)})

schema.dump(person)
{'date_of_birth': '1899-07-21',
'first_name': 'Ernest',
'last_name': 'Hemingway',
'sort_name': 'Hemingway, Ernest'}

Warning: Having to provide include on Schema object creation hints at bad design - why not just include the
fields in the Schema itself?

3.3.3 Field Order

Lima marshals objects to dictionaries. Field order doesn’t matter. Unless you want it to:

person_schema = PersonSchema(ordered=True)
person_schema.dump(person)
OrderedDict([
('first_name', 'Ernest'),
('last_name', 'Hemingway'),
('date_of_birth', '1899-07-21')])
])

Just provide the keyword-only argument ordered=True to a schema’s constructor, and the resulting instance will
dump ordered dictionaries.

The order of the resulting key-value-pairs reflects the order in which the fields were defined at schema definition time.

If you use __lima_args__[’include’], make sure to provide an instance of collections.OrderedDict
if you care about the order of those fields as well.

Fields specified via __lima_args__[’include’] are inserted at the position of the __lima_args__ class
attribute in the Schema class. Here is a more complex example:

from collections import OrderedDict

class FooSchema(Schema):
one = fields.String()
two = fields.String()

class BarSchema(FooSchema):
three = fields.String()
__lima_args__ = {

'include': OrderedDict([
('four', fields.String()),

3.3. Working with Schemas 11

lima Documentation, Release 0.6.dev0

('five', fields.String())
])

}
six = fields.String()

bar_schema = BarSchema(ordered=True)

bar_schema will dump ordered dictionaries with keys ordered from one to six.

Note: For the exact rules on how a complex schema’s fields are going to be ordered, see
lima.schema.SchemaMeta or have a look at the source code.

3.3.4 Marshalling Collections

Consider this:

persons = [
Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21)),
Person('Virginia', 'Woolf', datetime.date(1882, 1, 25)),
Person('Stefan', 'Zweig', datetime.date(1881, 11, 28)),

]

Instead of looping over this collection ourselves, we can ask the schema object to do this for us by specifying
many=True to the schema’s constructor):

many_persons_schema = PersonSchema(only='last_name', many=True)
many_persons_schema.dump(persons)
[{'last_name': 'Hemingway'},
{'last_name': 'Woolf'},
{'last_name': 'Zweig'}]

3.3.5 Schema Recap

• You now know how to compose bigger schemas from smaller ones (inheritance of schema classes).

• You know how to exclude certain fields from schemas (__lima_args__[’exclude’]).

• You know three different ways to add fields to schemas (class attributes, __lima_args__[’include’]
and inheriting from other schemas).

• You can fine-tune what gets dumped by a schema object (only and exclude keyword-only arguments)

• You can dump ordered dictionaries (ordered=True) and you can serialize collections of objects
(many=True).

3.4 A closer Look at Fields

Fields are the basic building blocks of a Schema. Even though lima fields follow only the most basic protocol, they
are rather powerful.

12 Chapter 3. Documentation

lima Documentation, Release 0.6.dev0

3.4.1 How a Field gets its Data

The PersonSchema from the last chapter contains three field objects named first_name, last_name and
date_of_birth. These get their data from a person object’s attributes of the same name. But what if those attributes
were named differently?

Data from arbitrary Object Attributes

Let’s say our model doesn’t have an attribute date_of_birth but an attribute birthday instead.

To get the data for our date_of_birth field from the model’s birthday attribute, we have to tell the field by
supplying the attribute name via the attr argument:

import datetime
from lima import Schema, fields

class Person:
def __init__(self, first_name, last_name, birthday):

self.first_name = first_name
self.last_name = last_name
self.birthday = birthday

person = Person('Ernest', 'Hemingway', datetime.date(1899, 7, 21))

class PersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()
date_of_birth = fields.Date(attr='birthday')

schema = PersonSchema()
schema.dump(person)
{'date_of_birth': '1899-07-21',
'first_name': 'Ernest',
'last_name': 'Hemingway'}

Data from an Object’s Items

If an object has it’s data stored in items instead of attributes, we can tell the field about this by supplying the key
argument instead of the attr argument:

import datetime
from lima import Schema, fields

person_dict = {
'first_name': 'Ernest',
'last_name': 'Hemingway',
'birthday': datetime.date(1899, 7, 21),

}

class PersonDictSchema(Schema):
last_name = fields.String(key='last_name')
date_of_birth = fields.Date(key='birthday')

schema = PersonDictSchema()
schema.dump(person_dict)

3.4. A closer Look at Fields 13

lima Documentation, Release 0.6.dev0

{'date_of_birth': '1899-07-21',
'last_name': 'Hemingway'}

Note: It’s currently not possible to provide None as key. use a getter (see below) if you need to do this.

Data derived by different Means

What if we can’t get the information we need from a single attribute or key? Here getters come in handy.

A getter in this context is a callable that takes an object (in our case: a person object) and returns the value we’re
interested in. We tell a field about the getter via the get parameter:

def sort_name_getter(obj):
return '{}, {}'.format(obj.last_name, obj.first_name)

class PersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()
sort_name = fields.String(get=sort_name_getter)
date_of_birth = fields.Date(attr='birthday')

schema = PersonSchema()
schema.dump(person)
{'date_of_birth': '1899-07-21',
'first_name': 'Ernest',
'last_name': 'Hemingway'
'sort_name': 'Hemingway, Ernest'}

Note: For getters, lambda expressions come in handy. sort_name could just as well have been defined like this:

sort_name = fields.String(
get=lambda obj: '{}, {}'.format(obj.last_name, obj.first_name)

)

Constant Field Values

Sometimes a field’s data is always the same. For example, if a schema provides a field for type information, this field
will most likely always have the same value.

To reflect this, we could provide a getter that always returns the same value (here, for example, the string
’https:/schema.org/Person’). But lima provides a better way to achieve the same result: Just provide
the val parameter to a field’s constructor:

class TypedPersonSchema(Schema):
_type = fields.String(val='https://schema.org/Person')
givenName = fields.String(attr='first_name')
familyName = fields.String(attr='last_name')
birthDate = fields.Date(attr='birthday')

schema = TypedPersonSchema()
schema.dump(person)
{'_type': 'https://schema.org/Person',
'birthDate': '1899-07-21',
'familyName': 'Hemingway',
'givenName': 'Ernest'}

14 Chapter 3. Documentation

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

lima Documentation, Release 0.6.dev0

Note: It’s currently not possible to provide None as a constant value using val - use a getter if you need to do this.

On Field Parameters

attr, get and val are mutually exclusive. See lima.fields.Field for more information on this topic.

3.4.2 How a Field presents its Data

If a field has a static method (or instance method) pack(), this method is used to present a field’s data. (Otherwise
the field’s data is just passed through on marshalling. Some of the more basic built-in fields behave that way.)

So by implementing a pack() static method (or instance method), we can support marshalling of any data type we
want:

from collections import namedtuple
from lima import fields, Schema

a new data type
GeoPoint = namedtuple('GeoPoint', ['lat', 'long'])

a field class for the new date type
class GeoPointField(fields.Field):

@staticmethod
def pack(val):

ns = 'N' if val.lat > 0 else 'S'
ew = 'E' if val.long > 0 else 'W'
return '{}° {}, {}° {}'.format(val.lat, ns, val.long, ew)

a model using the new data type
class Treasure:

def __init__(self, name, location):
self.name = name
self.location = location

a schema for that model
class TreasureSchema(Schema):

name = fields.String()
location = GeoPointField()

treasure = Treasure('The Amber Room', GeoPoint(lat=59.7161, long=30.3956))
schema = TreasureSchema()
schema.dump(treasure)
{'location': '59.7161° N, 30.3956° E', 'name': 'The Amber Room'}

Or we can change how already supported data types are marshalled:

class FancyDate(fields.Date):
@staticmethod
def pack(val):

return val.strftime('%A, the %d. of %B %Y')

class FancyPersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()

3.4. A closer Look at Fields 15

lima Documentation, Release 0.6.dev0

date_of_birth = FancyDate(attr='birthday')

schema = FancyPersonSchema()
schema.dump(person)
{'date_of_birth': 'Friday, the 21. of July 1899',
'first_name': 'Ernest',
'last_name': 'Hemingway'}

Warning: Make sure the result of your pack() methods is JSON serializable (or at least in a format accepted
by the serializer of your target format).
Also, don’t try to override an existing instance method with a static method. Have a look at the source if in doubt
(in lima itself, currently only lima.fields.Embed and lima.fields.Reference implement pack()
as instance methods.

3.4.3 Data Validation

In short: There is none.

lima is opinionated in this regard. It assumes you have control over the data you want to serialize and have already
validated it before putting it in your database.

But this doesn’t mean it can’t be done. You’ll just have to do it yourself. The pack() method would be the place for
this:

import re

class ValidEmailField(fields.String):
@staticmethod
def pack(val):

if not re.match(r'[^@]+@[^@]+\.[^@]+', val):
raise ValueError('Not an email address: {!r}'.format(val))

return val

Note: If you need full-featured validation of your existing data at marshalling time, have a look at marshmallow.

3.4.4 Fields Recap

• You now know how it’s determined where a field’s data comes from. (from least to highest precedence: field
name < attr < getter < constant field value.

• You know how a field presents its data (pack() method).

• You know how to support your own data types (subclass lima.fields.Field) and implement pack()

• And you know how to change the marshalling of already supported data types (subclass the appropriate field
class and override pack())

• Also, you’re able to implement data validation should the need arise (implement/override pack()).

3.5 Linked Data

Let’s model a relationship between a book and a book review:

16 Chapter 3. Documentation

http://marshmallow.readthedocs.org

lima Documentation, Release 0.6.dev0

class Book:
def __init__(self, isbn, author, title):

self.isbn = isbn
self.author = author
self.title = title

A review links to a book via the "book" attribute
class Review:

def __init__(self, rating, text, book=None):
self.rating = rating
self.text = text
self.book = book

book = Book('0-684-80122-1', 'Hemingway', 'The Old Man and the Sea')
review = Review(10, 'Has lots of sharks.')
review.book = book

To serialize this construct, we have to tell lima that a Review object links to a Book object via the book attribute
(many ORMs represent related objects in a similar way).

3.5.1 Embedding linked Objects

We can use a field of type lima.fields.Embed to embed the serialized book into the serialization of the review.
For this to work we have to tell the Embed field what to expect by providing the schema parameter:

from lima import fields, Schema

class BookSchema(Schema):
isbn = fields.String()
author = fields.String()
title = fields.String()

class ReviewSchema(Schema):
book = fields.Embed(schema=BookSchema)
rating = fields.Integer()
text = fields.String()

review_schema = ReviewSchema()
review_schema.dump(review)
{'book': {'author': 'Hemingway',
'isbn': '0-684-80122-1',
'title': 'The Old Man and the Sea'},
'rating': 10,
'text': 'Has lots of sharks.'}

Along with the mandatory keyword-only argument schema, Embed accepts the optional keyword-only-arguments
we already know (attr, get, val). All other keyword arguments provided to Embed get passed through to the
constructor of the associated schema. This allows us to do stuff like the following:

class ReviewSchemaPartialBook(Schema):
rating = fields.Integer()
text = fields.String()
partial_book = fields.Embed(attr='book',

schema=BookSchema,
exclude='isbn')

review_schema_partial_book = ReviewSchemaPartialBook()

3.5. Linked Data 17

lima Documentation, Release 0.6.dev0

review_schema_partial_book.dump(review)
{'partial_book': {'author': 'Hemingway',
'title': 'The Old Man and the Sea'},
'rating': 10,
'text': 'Has lots of sharks.'}

3.5.2 Referencing linked Objects

Embedding linked objects is not always what we want. If we just want to reference linked objects, we can use a
field of type lima.fields.Reference. This field type yields the value of a single field of the linked object’s
serialization.

Referencing is similar to embedding save one key difference: In addition to the schema of the linked object we also
provide the name of the field that acts as our reference to the linked object. We may, for example, reference a book via
its ISBN like this:

class ReferencingReviewSchema(Schema):
book = fields.Reference(schema=BookSchema, field='isbn')
rating = fields.Integer()
text = fields.String()

referencing_review_schema = ReferencingReviewSchema()
referencing_review_schema.dump(review)
{'book': '0-684-80122-1',
'rating': 10,
'text': 'Has lots of sharks.'}

3.5.3 Hyperlinks

One application of Reference is linking to ressources via hyperlinks in RESTful Web services. Here is a quick
sketch:

your framework should provide something like this
def book_url(book):

return 'https://my.service/books/{}'.format(book.isbn)

class BookSchema(Schema):
url = fields.String(get=book_url)
isbn = fields.String()
author = fields.String()
title = fields.String()

class ReviewSchema(Schema):
book = fields.Reference(schema=BookSchema, field='url')
rating = fields.Integer()
text = fields.String()

review_schema = ReviewSchema()
review_schema.dump(review)
{'book': 'https://my.service/books/0-684-80122-1',
'rating': 10,
'text': 'Has lots of sharks.'}

Note: If you want to do JSON-LD, you may want to have fields with names like "@id" or "@context". Have a
look at the section on Field Name Mangling for an easy way to accomplish this.

18 Chapter 3. Documentation

http://json-ld.org

lima Documentation, Release 0.6.dev0

3.5.4 Two-way Relationships

Up until now, we’ve only dealt with one-way relationships (From a review to its book). If not only a review should
link to its book, but a book should also link to it’s most popular review, we can adapt our model like this:

books now link to their most popular review
class Book:

def __init__(self, isbn, author, title, pop_review=None):
self.isbn = isbn
self.author = author
self.title = title
self.pop_review = pop_review

unchanged: reviews still link to their books
class Review:

def __init__(self, rating, text, book=None):
self.rating = rating
self.text = text
self.book = book

book = Book('0-684-80122-1', 'Hemingway', 'The Old Man and the Sea')
review = Review(4, "Why doesn't he just kill ALL the sharks?")

book.pop_review = review
review.book = book

If we want to construct schemas for models like this, we will have to adress two problems:

1. Definition order: If we define our BookSchema first, its pop_review attribute will have to reference a
ReviewSchema - but this doesn’t exist yet, since we decided to define BookSchema first. If we decide to
define ReviewSchema first instead, we run into the same problem with its book attribute.

2. Recursion: A review links to a book that links to a review that links to a book that links to a review that links
to a book that links to a review that links to a book RuntimeError: maximum recursion depth
exceeded

lima makes it easy to deal with those problems:

To overcome the problem of recursion, just exclude the attribute on the other side that links back.

To overcome the problem of definition order, lima supports lazy evaluation of schemas. Just pass the qualified name
(or the fully module-qualified name) of a schema class to Embed instead of the class itself:

class BookSchema(Schema):
isbn = fields.String()
author = fields.String()
title = fields.String()
pop_review = fields.Embed(schema='ReviewSchema', exclude='book')

class ReviewSchema(Schema):
book = fields.Embed(schema=BookSchema, exclude='pop_review')
rating = fields.Integer()
text = fields.String()

Now embedding works both ways:

book_schema = BookSchema()
book_schema.dump(book)

3.5. Linked Data 19

lima Documentation, Release 0.6.dev0

{'author': 'Hemingway',
'isbn': '0-684-80122-1',
'pop_review': {'rating': 4,
'text': "Why doesn't he just kill ALL the sharks?"},
'title': The Old Man and the Sea'}

review_schema = ReviewSchema()
review_schema.dump(review)
{'book': {'author': 'Hemingway',
'isbn': '0-684-80122-1',
'title': 'The Old Man and the Sea'},
'rating': 4,
'text': "Why doesn't he just kill ALL the sharks?"}

On class names
For referring to classes via their name, the lima documentation only ever talks about two different kinds of class names:
the qualified name (qualname for short) and the fully module-qualified name:

The qualified name This is the value of the class’s __qualname__ attribute. Most of the time, it’s the same as the
class’s __name__ attribute (except if you define classes within classes or functions ...). If you define class
Foo: pass at the top level of your module, the class’s qualified name is simply Foo. Qualified names were
introduced with Python 3.3 via PEP 3155

The fully module-qualified name This is the qualified name of the class prefixed with the full name of the mod-
ule the class is defined in. If you define class Qux: pass within a class Baz (resulting in the quali-
fied name Baz.Qux) at the top level of your foo.bar module, the class’s fully module-qualified name is
foo.bar.Baz.Qux.

Warning: If you define schemas in local namespaces (at function execution time), their names become meaning-
less outside of their local context. For example:

def make_schema():
class FooSchema(Schema):

foo = fields.String()
return FooSchema

schemas = [make_schema() for i in range(1000)]

Which of those one thousend schemas would we refer to, would we try to link to a FooSchema by name? To
avoid ambiguity, lima will refuse to link to schemas defined in local namespaces.

By the way, there’s nothing stopping us from using the idioms we just learned for models that link to themselves -
everything works as you’d expect:

class MarriedPerson:
def __init__(self, first_name, last_name, spouse=None):

self.first_name = first_name
self.last_name = last_name
self.spouse = spouse

class MarriedPersonSchema(Schema):
first_name = fields.String()
last_name = fields.String()
spouse = fields.Embed(schema='MarriedPersonSchema', exclude='spouse')

20 Chapter 3. Documentation

https://python.org/dev/peps/pep-3155

lima Documentation, Release 0.6.dev0

3.5.5 One-to-many and many-to-many Relationships

Until now, we’ve only dealt with one-to-one relations. What about one-to-many and many-to-many relations? Those
link to collections of objects.

We know the necessary building blocks already: Providing additional keyword arguments to Embed (or Reference
respectively) passes them through to the specified schema’s constructor. And providing many=True to a schema’s
construtor will have the schema marshalling collections - so if our model looks like this:

books now have a list of reviews
class Book:

def __init__(self, isbn, author, title):
self.isbn = isbn
self.author = author
self.title = title
self.reviews = []

class Review:
def __init__(self, rating, text, book=None):

self.rating = rating
self.text = text
self.book = book

book = Book('0-684-80122-1', 'Hemingway', 'The Old Man and the Sea')
book.reviews = [

Review(10, 'Has lots of sharks.', book),
Review(4, "Why doesn't he just kill ALL the sharks?", book),
Review(8, 'Better than the movie!', book),

]

... we wourld define our schemas like this:

class BookSchema(Schema):
isbn = fields.String()
author = fields.String()
title = fields.String()
reviews = fields.Embed(schema='ReviewSchema',

many=True,
exclude='book')

class ReviewSchema(Schema):
book = fields.Embed(schema=BookSchema, exclude='reviews')
rating = fields.Integer()
text = fields.String()

... which enables us to serialize a book object with many reviews:

book_schema = BookSchema()
book_schema.dump(book)
{'author': 'Hemingway',
'isbn': '0-684-80122-1',
'reviews': [
{'rating': 10, 'text': 'Has lots of sharks.'},
{'rating': 4, 'text': "Why doesn't he just kill ALL the sharks?"},
{'rating': 8, 'text': 'Better than the movie!'}],
'title': The Old Man and the Sea'

3.5. Linked Data 21

lima Documentation, Release 0.6.dev0

3.5.6 Linked Data Recap

• You now know how to marshal embedded linked objects (via a field of type lima.fields.Embed)

• You now know how to marshal references to linked objects (via a field of type lima.fields.References)

• You know about lazy evaluation of linked schemas and how to specify those via qualified and fully module-
qualified names.

• You know how to implement two-way relationships between objects (pass exclude or only to the linked
schema through lima.fields.Embed)

• You know how to marshal linked collections of objects (pass many=True to the linked schema through
lima.fields.Embed)

3.6 Advanced Topics

3.6.1 Automated Schema Definition

Validating ORM agnosticism for a moment, let’s see how we could utilize __lima_args__[’include’] to
create our Schema automatically.

We start with this SQLAlchemy model (skip this section if you don’t want to install SQLAlchemy):

import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Account(Base):
__tablename__ = 'accounts'
id = sa.Column(sa.Integer, primary_key=True)
login = sa.Column(sa.String)
password_hash = sa.Column(sa.String)

lima.fields defines a mapping lima.fields.TYPE_MAPPING of some Python types to field classes. We can
utilize this as follows:

from lima import fields

def fields_for_model(model):
result = {}
for name, col in model.__mapper__.columns.items():

field_class = fields.TYPE_MAPPING[col.type.python_type]
result[name] = field_class()

return result

Defining lima schemas becomes a piece of cake now:

from lima import Schema

class AccountSchema(Schema):
__lima_args__ = {'include': fields_for_model(Account)}

dict(AccountSchema.__fields__)
{'id': <lima.fields.Integer at 0x...>,
'login': <lima.fields.String at 0x...>,
'password_hash': <lima.fields.String at 0x...>}

22 Chapter 3. Documentation

http://www.sqlalchemy.org

lima Documentation, Release 0.6.dev0

... and of course you still can manually add, exclude or inherit anything you like.

Warning: Neither lima.fields.TYPE_MAPPING nor the available field classes are as exhaustive as they
should be. Expect above code to fail on slightly exotic column types. There is still work to be done.

3.6.2 Field Name Mangling

Fields specified via __lima_args__[’include’] can have arbitrary names. Fields provided via class attributes
have a drawback: class attribute names have to be valid Python identifiers.

lima implements a simple name mangling mechanism to allow the specification of some common non-Python-
identifier field names (like JSON-LD‘s "@id") as class attributes.

The following table shows how name prefixes will be replaced by lima when specifying fields as class attributes (note
that every one of those prefixes ends with a double underscore):

name prefix replacement
’at__’ ’@’
’dash__’ ’-’
’dot__’ ’.’
’hash__’ ’#’
’plus__’ ’+’
’nil__’ ’’ (the emtpy String)

This enables us to do the following:

class FancyFieldNamesSchema(Schema):
at__foo = fields.String(attr='foo')
hash__bar = fields.String(attr='bar')
nil__class = fields.String(attr='cls') # Python Keyword

list(FancyFieldNamesSchema.__fields__)
['@foo', '#bar', 'class']

Note: When using field names that aren’t Python identifiers, lima obviously can’t look for attributes with those same
names, so make sure to specify explicitly how the data for these fields should be determined (see How a Field gets its
Data).

3.6.3 Advanced Topics Recap

• You are now able to create schemas automatically (__lima_args__[’include’] with some model-
specific code).

• You can specify a field named ’@context’ as a schema class attribute (using field name mangling:
’at__context’).

3.7 The lima API

Please note that the lima API uses a relatively uncommon feature of Python 3: Keyword-only arguments.

Keyword-only arguments

3.7. The lima API 23

http://json-ld.org

lima Documentation, Release 0.6.dev0

Keyword-only arguments can be recognized by their position in a method/function signature: Every argument coming
after the varargs argument like *args (or after a single *) is a keyword-only argument.

A function that is defined as def foo(*, x, y): pass must be called like this: foo(x=1, y=2); calling
foo(1, 2) will raise a TypeError.

It is the author’s opinion that enforcing keyword arguments in the right places makes the resulting code more readable.

For more information about keyword-only arguments, see PEP 3102

3.7.1 lima.abc

Abstract base classes for fields and schemas.

class lima.abc.FieldABC
Abstract base class for fields.

Being an instance of FieldABC marks a class as a field for internal type checks. You can use this class to
implement your own type checks as well.

Note: To create new fields, it’s a better Idea to subclass lima.fields.Field directly instead of imple-
menting FieldABC on your own.

class lima.abc.SchemaABC
Abstract base class for schemas.

Being an instance of SchemaABC marks a class as a schema for internal type checks. You can use this class to
implement your own type checks as well.

Note: To create new schemas, it’s a way better Idea to subclass lima.schema.Schema directly instead of
implementing SchemaABC on your own.

3.7.2 lima.exc

The lima exception hierarchy.

Note: Currently this module only holds Exceptions related to lima.registry, but this might change in the future.

exception lima.exc.AmbiguousClassNameError
Raised when asking for a class with an ambiguous name.

Usually this is the case if two or more classes of the same name were registered from within different modules,
and afterwards a registry is asked for one of those classes without specifying the module in the class name.

exception lima.exc.ClassNotFoundError
Raised when a class was not found by a registry.

exception lima.exc.RegisterLocalClassError
Raised when trying to register a class defined in a local namespace.

exception lima.exc.RegistryError
The base class for all registry-related exceptions.

24 Chapter 3. Documentation

https://python.org/dev/peps/pep-3102

lima Documentation, Release 0.6.dev0

3.7.3 lima.fields

Field classes and related code.

lima.fields.TYPE_MAPPING =dict(...)
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable:

d[k] = v

dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For
example: dict(one=1, two=2)

class lima.fields.Boolean(*, attr=None, key=None, get=None, val=None)
A boolean field.

currently this class has no additional functionality compared to Field. Nevertheless it should be used over
Field when referencing boolean values as an indicator for a field’s type and to keep code future-proof.

class lima.fields.Date(*, attr=None, key=None, get=None, val=None)
A date field.

static pack(val)
Return a string representation of val.

Parameters val – The :class: datetime.date object to convert.

Returns The ISO 8601-representation of val (YYYY-MM-DD).

class lima.fields.DateTime(*, attr=None, key=None, get=None, val=None)
A DateTime field.

static pack(val)
Return a string representation of val.

Parameters val – The :class: datetime.datetime object to convert.

Returns The ISO 8601-representation of val (YYYY-MM-DD%HH:MM:SS.mmmmmm+HH:MM
for datetime.datetime objects with Timezone information and microsecond preci-
sion).

class lima.fields.Decimal(*, attr=None, key=None, get=None, val=None)
A decimal field.

Decimal values get serialized as strings, this way, no precision is lost.

class lima.fields.Embed(*, schema, attr=None, key=None, get=None, val=None, **kwargs)
A Field to embed linked objects.

Parameters

• schema – The schema of the linked object. This can be specified via a schema object, a
schema class or the qualified name of a schema class (for when the named schema has not
been defined at the time of instantiation. If two or more schema classes with the same name
exist in different modules, the schema class name has to be fully module-qualified (see the
entry on class names for clarification of these concepts). Schemas defined within a local
namespace can not be referenced by name.

• attr – See :class: Field.

• key – See :class: Field.

3.7. The lima API 25

lima Documentation, Release 0.6.dev0

• get – See :class: Field.

• val – See :class: Field.

• kwargs – Optional keyword arguments to pass to the :class: Schema‘s constructor when
the time has come to instance it. Must be empty if schema is a lima.schema.Schema
object.

Examples:

refer to PersonSchema class
author = Embed(schema=PersonSchema)

refer to PersonSchema class with additional params
artists = Embed(schema=PersonSchema, exclude='email', many=True)

refer to PersonSchema object
author = Embed(schema=PersonSchema())

refer to PersonSchema object with additional params
(note that Embed() itself gets no kwargs)
artists = Embed(schema=PersonSchema(exclude='email', many=true))

refer to PersonSchema per name
author = Embed(schema='PersonSchema')

refer to PersonSchema per name with additional params
author = Embed(schema='PersonSchema', exclude='email', many=True)

refer to PersonSchema per module-qualified name
(in case of ambiguity)
author = Embed(schema='project.persons.PersonSchema')

specify attr name as well
user = Embed(attr='login_user', schema=PersonSchema)

pack(val)
Return the marshalled representation of val.

Parameters val – The linked object to embed.

Returns The marshalled representation of val (or None if val is None).

Note that the return value is determined using an (internal) dump fields function of the associated schema
object. This means that overriding the associated schema’s dump() method has no effect on the result of
this method.

class lima.fields.Field(*, attr=None, key=None, get=None, val=None)
Base class for fields.

Parameters

• attr – The optional name of the corresponding attribute.

• key – The optional name of the corresponding key.

• get – An optional getter function accepting an object as its only parameter and returning
the field value.

• val – An optional constant value for the field.

New in version 0.3: The val parameter.

attr, key, get and val are mutually exclusive.

26 Chapter 3. Documentation

lima Documentation, Release 0.6.dev0

When a Field object ends up with two or more of the attributes attr, key, get and val regardless (because
one or more of them are implemented at the class level for example), lima.schema.Schema.dump() tries
to get the field’s value in the following order: val get key and finally attr.

If a Field object ends up with none of these attributes (not at the instance and not at the class level),
lima.schema.Schema.dump() tries to get the field’s value by looking for an attribute of the same name
as the field has within the corresponding lima.schema.Schema instance.

class lima.fields.Float(*, attr=None, key=None, get=None, val=None)
A float field.

currently this class has no additional functionality compared to Field. Nevertheless it should be used over
Field when referencing float values as an indicator for a field’s type and to keep code future-proof.

class lima.fields.Integer(*, attr=None, key=None, get=None, val=None)
An integer field.

currently this class has no additional functionality compared to Field. Nevertheless it should be used over
Field when referencing integer values as an indicator for a field’s type and to keep code future-proof.

class lima.fields.Reference(*, schema, field, attr=None, key=None, get=None, val=None,
**kwargs)

A Field to reference linked objects.

Parameters

• schema – A schema for the linked object (see :class: Embed for details on how to specify
this schema). One field of this schema will act as reference to the linked object.

• field – The name of the field to act as reference to the linked object.

• attr – see :class: Field.

• key – see :class: Field.

• get – see :class: Field.

• val – see :class: Field.

• kwargs – see :class: Embed.

pack(val)
Return value of reference field of marshalled representation of val.

Parameters val – The nested object to get the reference to.

Returns The value of the reference-field of the marshalled representation of val (see field
argument of constructor) or None if val is None.

Note that the return value is determined using an (internal) dump field function of the associated schema
object. This means that overriding the associated schema’s dump() method has no effect on the result of
this method.

class lima.fields.String(*, attr=None, key=None, get=None, val=None)
A string field.

currently this class has no additional functionality compared to Field. Nevertheless it should be used over
Field when referencing string values as an indicator for a field’s type and to keep code future-proof.

3.7.4 lima.schema

Schema class and related code.

3.7. The lima API 27

lima Documentation, Release 0.6.dev0

class lima.schema.Schema(*, exclude=None, only=None, include=None, ordered=False, many=False)
Base class for Schemas.

Parameters

• exclude – An optional sequence of field names to be removed from the fields of the new
Schema instance. If only one field is to be removed, it’s ok to supply a simple string instead
of a list containing only one string for exclude. exclude may not be specified together
with only.

• only – An optional sequence of the names of the only fields that shall remain for the new
Schema instance. If just one field is to remain, it’s ok to supply a simple string instead
of a list containing only one string for only. only may not be specified together with
exclude.

• include – An optional mapping of field names to fields to additionally include in the
new Schema instance. Think twice before using this option - most of the time it’s better to
include fields at class level rather than at instance level.

• ordered – An optional boolean indicating if the :meth: Schema.dump method should
output collections.OrderedDict objects instead of simple dict objects. Defaults
to False. This does not influence how nested fields are serialized.

• many – An optional boolean indicating if the new Schema will be serializing single objects
(many=False) or collections of objects (many=True) per default. This can later be
overridden in the dump() Method.

New in version 0.3: The include parameter.

New in version 0.3: The ordered parameter.

Upon creation, each Schema object gets an internal mapping of field names to fields. This mapping starts out
as a copy of the class’s __fields__ attribute. (For an explanation on how this __fields__ attribute is
determined, see SchemaMeta.)

Note that the fields themselves are not copied - changing the field of an instance would change this field for
the other instances and classes referencing this field as well. In general it is strongly suggested to treat fields as
immutable.

The internal field mapping is then modified as follows:

•If include was provided, fields specified therein are added (overriding any fields of the same name
already present)

If the order of your fields is important, make sure that include is of type
collections.OrderedDict or similar.

•If exclude was provided, fields specified therein are removed.

•If only was provided, all but the fields specified therein are removed (unless exclude was provided as
well, in which case a ValueError is raised.)

Also upon creation, each Schema object gets an individually created dump function that aims to unroll most of
the loops and to minimize the number of attribute lookups, resulting in a little speed gain on serialization.

Schema classes defined outside of local namespaces can be referenced by name (used by
lima.fields.Nested).

dump(obj)
Return a marshalled representation of obj.

Parameters obj – The object (or collection of objects, depending on the schema’s many prop-
erty) to marshall.

28 Chapter 3. Documentation

lima Documentation, Release 0.6.dev0

Returns A representation of obj in the form of a JSON-serializable dict (or
collections.OrderedDict, depending on the schema’s ordered property),
with each entry corresponding to one of the schema’s fields. (Or a list of such dicts in case a
collection of objects was marshalled)

Changed in version 0.4: Removed the many parameter of this method.

many
Read-only property: does the dump method expect collections?

ordered
Read-only property: does the dump method return ordered dicts?

class lima.schema.SchemaMeta
Metaclass of Schema.

Note: The metaclass SchemaMeta is used internally to simplify the configuration of new Schema classes.
For users of the library there should be no need to use SchemaMeta directly.

When defining a new Schema (sub)class, SchemaMeta makes sure that the new class has a class attribute
__fields__ of type collections.OrderedDict containing the fields for the new Schema.

__fields__ is determined like this:

•The __fields__ of all base classes are copied (with base classes specified first having precedence).

Note that the fields themselves are not copied - changing an inherited field would change this field for all
base classes referencing this field as well. In general it is strongly suggested to treat fields as immutable.

•Fields (Class variables of type lima.abc.FieldABC) are moved out of the class namespace and into
__fields__, overriding any fields of the same name therein.

•If present, the class attribute __lima_args__ is removed from the class namespace and evaluated as
follows:

–Fields specified via __lima_args__[’include’] (an optional mapping of field names to fields)
are inserted into __fields__. overriding any fields of the same name therein.

If the order of your fields is important, make sure that __lima_args__[’include’] is of type
collections.OrderedDict or similar.

New fields in __lima_args__[’include’]__ are inserted at the position where
__lima_args__ is specified in the class.

–Fields named in an optional sequence __lima_args__[’exclude’] are removed from
__fields__. If only one field is to be removed, it’s ok to supply a simple string instead of a
list containing only one string. __lima_args__[’exclude’] may not be specified together
with __lima_args__[’only’].

–If in an optional sequence __lima_args__[’only’] is provided, all but the fields mentioned
therein are removed from __fields__. If only one field is to remain, it’s ok to supply a simple
string instead of a list containing only one string. __lima_args__[’only’]may not be specified
together with __lima_args__[’exclude’].

Think twice before using __lima_args__[’only’] - most of the time it’s better to rethink your
Schema than to remove a lot of fields that maybe shouldn’t be there in the first place.

New in version 0.3: Support for __lima_args__[’only’].

SchemaMeta also makes sure the new Schema class is registered with the lima class registry
lima.registry (at least if the Schema isn’t defined inside a local namespace, where we wouldn’t find it
later on).

3.7. The lima API 29

lima Documentation, Release 0.6.dev0

classmethod __prepare__(metacls, name, bases)
Return an OrderedDict as the class namespace.

This allows us to keep track of the order in which fields were defined for a schema.

3.8 Project Info

lima was started in 2014 by Bernhard Weitzhofer.

3.8.1 Acknowledgements

lima is heavily inspired by marshmallow, from which it lifts most of its concepts from.

Note: The key differences between lima and marshmallow are (from my, Bernhard’s point of view):

• marshmallow supports Python 2 as well, lima is Python 3 only.

• marshmallow has more features, foremost among them deserialization and validation.

• Skipping validation and doing internal stuff differently, lima is (at the time of writing this) noticeably faster.

Although greatly inspired by marshmallow’s API, the lima API differs from marshmallow’s. lima is not a drop-in
replacement for marshmallow and it does not intend to become one.

The lima sources include a copy of the Read the Docs Sphinx Theme.

The author believes to have benefited a lot from looking at the documentation and source code of other awesome
projects, among them django, morepath, Pyramid (lima.util.reify was taken from there) and SQLAlchemy as
well as the Python standard library itself. (Seriously, look in there!)

3.8.2 About the Image

The Vicuña is the smallest and lightest camelid in the world. In this 1914 illustration 1, it is depicted next to its bigger
and heavier relatives, the Llama and the Alpaca.

Despite its delicate frame, the Vicuña is perfectly adapted to the harsh conditions in the high alpine regions of the
Andes. It is a mainly wild animal long time believed to never have been domesticated. Reports of Vicuñas breathing
fire are exaggerated.

3.9 Changelog

3.9.1 0.6 (unreleased)

Note: While unreleased, the changelog of lima 0.6 is itself subject to change.

1 Beach, C. (Ed.). (1914). The New Student’s Reference Work. Chicago: F. E. Compton and Company (via Wikisource).

30 Chapter 3. Documentation

http://marshmallow.readthedocs.org
https://github.com/snide/sphinx_rtd_theme
https://www.djangoproject.com
https://morepath.readthedocs.org
http://www.pylonsproject.org
http://www.sqlalchemy.org
http://en.wikisource.org/wiki/The_New_Student%27s_Reference_Work

lima Documentation, Release 0.6.dev0

3.9.2 0.5 (2015-05-11)

• Support getting field values from an object’s items by providing the key argument to a Field constructor.

• Add a fields.Decimal field type that packs decimal.Decimal values into strings.

• Move Tests into directory /test.

• Remove deprecated field fields.Nested. Use fields.Embed instead.

3.9.3 0.4 (2015-01-15)

• Breaking Change: The Schema.dump method no longer supports the many argument. This makes many
consistent with ordered and simplifies internals.

• Improve support for serializing linked data:

– Add new field type fields.Reference for references to linked objects.

– Add new name for fields.Nested: fields.Embed. Deprecate fields.Nested in favour of
fields.Embed.

• Add read-only properties many and ordered for schema objects.

• Don’t generate docs for internal modules any more - those did clutter up the documentation of the actual API
(the docstrings remain though).

• Implement lazy evaluation and caching of some attributes (affects methods: Schema.dump, Embed.pack
and Reference.pack). This means stuff is only evaluated if and when really needed, but it also means:

– The very first time data is dumped/packed by a Schema/Embed/Reference object, there will be a tiny delay.
Keep objects around to mitigate this effect.

– Some errors might surface at a later time. lima mentions this when raising exceptions though.

• Allow quotes in field names.

• Small speed improvement when serializing collections.

• Remove deprecated name fields.type_mapping. Use fields.TYPE_MAPPING instead.

• Overall cleanup, improvements and bug fixes.

3.9.4 0.3.1 (2014-11-11)

• Fix inconsistency in changelog.

3.9.5 0.3 (2014-11-11)

• Support dumping of OrderedDict objects by providing ordered=True to a Schema constructor.

• Implement field name mangling: at__foo becomes @foo for fields specified as class attributes.

• Support constant field values by providing val to a Field constructor.

• Add new ways to specify a schema’s fields:

– Add support for __lima_args__[’only’] on schema definition

– Add include parameter to Schema constructor

3.9. Changelog 31

lima Documentation, Release 0.6.dev0

This makes specifying fields on schema definition (__lima_args__ - options include, exclude, only) consis-
tent with specifying fields on schema instantiation (schema constructor args include, exclude, only).

• Deprecate fields.type_mapping in favour of fields.TYPE_MAPPING.

• Improve the documentation.

• Overall cleanup, improvements and bug fixes.

3.9.6 0.2.2 (2014-10-27)

• Fix issue with package not uploading to PYPI

• Fix tiny issues with illustration

3.9.7 0.2.1 (2014-10-27)

• Fix issues with docs not building on readthedocs.org

3.9.8 0.2 (2014-10-27)

• Initial release

3.10 License

Copyright (c) 2014-2015, Bernhard Weitzhofer

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

32 Chapter 3. Documentation

Python Module Index

l
lima.abc, 24
lima.exc, 24
lima.fields, 25
lima.schema, 27

33

lima Documentation, Release 0.6.dev0

34 Python Module Index

Index

Symbols
__prepare__() (lima.schema.SchemaMeta class method),

29

A
AmbiguousClassNameError, 24

B
Boolean (class in lima.fields), 25

C
ClassNotFoundError, 24

D
Date (class in lima.fields), 25
DateTime (class in lima.fields), 25
Decimal (class in lima.fields), 25
dump() (lima.schema.Schema method), 28

E
Embed (class in lima.fields), 25

F
Field (class in lima.fields), 26
FieldABC (class in lima.abc), 24
Float (class in lima.fields), 27

I
Integer (class in lima.fields), 27

L
lima.abc (module), 24
lima.exc (module), 24
lima.fields (module), 25
lima.schema (module), 27

M
many (lima.schema.Schema attribute), 29

O
ordered (lima.schema.Schema attribute), 29

P
pack() (lima.fields.Date static method), 25
pack() (lima.fields.DateTime static method), 25
pack() (lima.fields.Embed method), 26
pack() (lima.fields.Reference method), 27

R
Reference (class in lima.fields), 27
RegisterLocalClassError, 24
RegistryError, 24

S
Schema (class in lima.schema), 27
SchemaABC (class in lima.abc), 24
SchemaMeta (class in lima.schema), 29
String (class in lima.fields), 27

T
TYPE_MAPPING (in module lima.fields), 25

35

	lima at a Glance
	Key Features
	Documentation
	Installation
	First Steps
	Working with Schemas
	A closer Look at Fields
	Linked Data
	Advanced Topics
	The lima API
	Project Info
	Changelog
	License

	Python Module Index

